ISOMETER® isoRW425

Insulation monitoring device for unearthed AC-, AC/DC and DC systems in railway applications up to 3(N)AC, AC/DC 440 V

ISOMETER® isoRW425

Insulation monitoring device for unearthed AC-, AC/DC and DC systems in railway applications up to 3(N)AC, AC/DC 440 V

Device features

- Monitoring of the insulation resistance *R_F* (R mode) or of the insulation impedance *Z_F* (Z mode) for unearthed 3(N)AC, AC and DC systems with galvanically connected rectifiers or frequency converters
- Insulation impedance Z_F (Z mode) for 50 Hz or 60 Hz
- Measuring the system voltage U_n (True-RMS) with undervoltage/ overvoltage detection
- Measuring the DC residual voltages U_{L1e} (L1/+ to PE) and U_{L2e} (L2/- to PE)
- Selectable start-up delay, response delay and delay on release
- Alarm output via LEDs ("AL1", "AL2"), display, and alarm relays ("K1", "K2")
- Automatic device self test with connection monitoring
- Selectable n/c or n/o relay operation
- Measured value indication via multifunctional LC display
- Activatable fault memory
- Automatic adjustment to the system leakage capacitance C_e up to 300 μF in R mode and 1 μF in Z mode
- Two separately adjustable response value ranges 1...990 kΩ (prewarning, alarm)
- Password protection against
 unauthorised changing of parameters
- RS-485 (galvanically isolated) including the following protocols:
 - BMS (Bender measuring device interface) for the data exchange with other Bender devices
 - Modbus RTU
 - IsoData (for continuous data output)

Intended use

The ISOMETER[®] monitors the insulation resistance R_F (R mode) or the insulation impedance (Z mode) of unearthed AC/DC main circuits (IT systems) with nominal system voltages of 3(N)AC, AC, AC/DC or DC 0...440 V.

DC components existing in 3(N)AC, AC/DC systems do not influence the operating characteristics when a minimum load current of DC 10 mA flows. The separate supply voltage U_s allows de-energised systems to be monitored as well.

The maximum permissible system leakage capacitance is 300 μF in R mode and 1 μF in Z mode.

In order to meet the requirements of the applicable standards, customised parameter settings must be made on the equipment in order to adapt it to local equipment and operating conditions. Please heed the limits of the range of application indicated in the technical data.

Any other use or a use that goes beyond this constitutes improper use.

- To ensure that the ISOMETER[®] functions correctly, an internal resistance of $\leq 1 \text{ k}\Omega$ must exist between L1/+ and L2/– via the source (e.g. PSU) or the load.
- **1** If the ISOMETER[®] is installed inside a control cabinet, the insulation fault message must be audible and/or visible to attract attention.

Functional description

The ISOMETER[®] measures the insulation resistance $R_{\rm F}$ and the system leakage capacitance $C_{\rm e}$ between the system to be monitored (L1/+, L2/-) and earth (PE). Z mode (selectable in the "SEt" menu) calculates the insulation impedance $Z_{\rm F}$ from $R_{\rm F}$ and $C_{\rm e}$ with a system frequency parameter $f_{\rm n} = 50$ Hz or $f_{\rm n} = 60$ Hz. The RMS value of the system voltage $U_{\rm n}$ between L1/+ and L2/- as well as the residual voltages $U_{\rm L1e}$ (between L1/+ and earth) and $U_{\rm L2e}$ (between L2/- and earth) are also measured.

Also from a minimum voltage, the ISOMETER[®] determines the insulation resistance R_{UGF} from the residual voltages U_{L1e} and U_{L2e} . It is an approximate value for one-sided insulation faults and can be used as a trend indicator in cases where the ISOMETER[®] has to adapt to an R_F and C_e relation that varies considerably.

The detected fault is assignable to an alarm relay via the menu. If the values $R_{\rm F}$, $Z_{\rm F}$ or $U_{\rm n}$ violate the response values activated in the "AL" menu, this will be indicated by the LEDs and relays "K1" and "K2" according to the signalling assignment set in the "out" menu. In addition, the menu offers the setting of the relay operation and the activation of the fault memory "M".

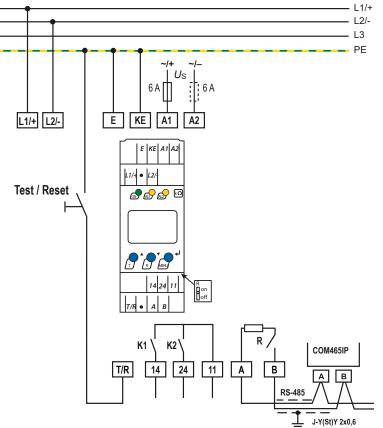
If the values $R_{\rm F}$, $Z_{\rm F}$ or $U_{\rm n}$ do not violate their release value (response value plus hysteresis) for the period $t_{\rm off}$ without interruption, the alarm relays will switch back to their initial position and the alarm LEDs stop lighting. If the fault memory is activated, the alarm relays remain in alarm position and the LEDs are lit until the reset key "R" is pressed or the supply voltage $U_{\rm s}$ is interrupted.

The device function can be checked with the test button "T".

Parameters are assigned to the device via the LCD and the control buttons on the front panel; this function can be password-protected. Parameterisation is also possible via the BMS bus, e.g. using a BMS Ethernet gateway (COM465IP) or Modbus RTU.

Connection

i


For UL applications:

Only use 60/75 °C copper lines.

For UL and CSA applications: Connect the supply voltage via 5 A fuses.

For details about the conductor cross sections required for wiring, refer to chapter Technical data.

Wiring diagram

Terminal	Connections
A1, A2	Connection to the supply volt- age U_{e} via fuse (line protection):
	If supplied from an IT system, protect both lines by a fuse.
E, KE	Connect each terminal separately to PE: Use same wire cross section as for "A1", "A2".
L1/+, L2/-	Connection to the system to be monitored
T/R	Connection for the external com- bined test and reset button
11, 14	Connection to alarm relay "K1"
11, 24	Connection to alarm relay "K2"
А, В	RS-485 communication interface with connectable terminating resistor Example: Connection of a BMS Ethernet gateway COM465IP

Technical data isoRW425

()* = factory setting

Insulation coordination acc. to IEC 60664-1/-3

Definitions

Measuring circuit (IC1)	L1/+, L2/-
Supply circuit (IC2)	A1, A2
Output circuit (IC3)	11, 14, 24
Control circuit (IC4)	E, KE, T/R, A, B
Rated voltage	440 V
Overvoltage category	

Rated impulse voltage

IC1/(IC2-4)	6 kV
IC2/(IC3-4)	4 kV
IC3/(IC4)	4 kV

Rated insulation voltage

IC1/(IC2-4)	500 V
IC2/(IC3-4)	250 V
IC3/(IC4)	250 V
Pollution degree	3

Protective separation (reinforced insulation) between

IC1/(IC2-4)	Overvoltage category III, 500 V
IC2/(IC3-4)	Overvoltage category III, 300 V
IC3/(IC4)	Overvoltage category III, 300 V

Voltage test (routine test) according to IEC 61010-1

IC2/(IC3-4)	AC 2.2 kV
IC3/(IC4)	AC 2.2 kV

Supply voltage

Supply voltage U _s	AC 100240 V
	DC 24240 V
Tolerance of U _s	-30+15 %
Frequency range of U _s	47…63 Hz
Power consumption	≤ 3 W, ≤ 9 VA

Monitored IT system

Nominal system voltage U _n	3(N)AC, AC 0440V/DC 0440 V
Nominal system voltage range U_n	AC/DC 0400 V
(UL508)	
Tolerance of U _n	+15 %
Frequency range of U _n	DC, 15460 Hz

Measuring circuit

Measuring voltage U _m	±12 V
Measuring current $I_{\rm m}$ at $R_{\rm F}$, $Z_{\rm F} = 0 \Omega$	≤ 110 μA
Internal resistance R_{i} , Z_{i}	≥ 115 kΩ
Permissible system leakage capacitance C _e	R mode: ≤ 300 μF
	Z mode: ≤ 1 µF
Permissible extraneous DC voltage U _{fg}	≤ 700 V

Response values

2…990 kΩ (40 kΩ)*
1…980 kΩ (10 kΩ)*
± 15 %, at least $\pm 1~k\Omega$
25 %, at least 1 kΩ
11…500 kΩ (off)*
10…490 kΩ (off)*
± 15 %, at least $\pm 1~\text{k}\Omega$
25 %, at least 1 kΩ
10499 V (off)*
11500 V (off)*
±5 %, at least ±5 V
–0,015 %/Hz
5 %, at least 5 V

Time response

Response time t_{an} of $R_F = 0.5 \times R_{an}$ and $C_e = 1 \mu\text{F}$ acc. to	≤ 10 s
IEC 61557-8	
Response time t_{an} of $Z_F = 0.5 \times Z_{an}$	≤ 5 s
Start-up delay t	010 s (0 s)*
Response delay t _{on}	099 s (0 s)*
Delay on release t _{off}	099 s (0 s)*

Displays, memory

Display	LC display, multi-functional, not illuminated
Display range measured value insulation resistance $(R_{\rm F})$	1 kΩ 4 MΩ
Display range measured value impedance (Z_F) with	1 kΩ 1 MΩ
$f_{\rm n} = 50/60 \; {\rm Hz}$	
Operating uncertainty $R_{\rm F}$ in R mode, $Z_{\rm F}$ in Z mode	± 15 %, at least $\pm 1~k\Omega$
Display range measured value system voltage (U_n)	0500 V _{RMS}
Operating uncertainty	±5 %, at least ±5 V
Display range measured value system leakage capacitance of $R_{\rm F}$ > 10 k Ω	0300 μF
Operating uncertainty	±15 %, at least ±2 μF
Display range measured value system leakage capacitance of $Z_{\rm F}$ > 10 k Ω	1 nF 1 μF
Operating uncertainty $(Z_F \approx X_c)$	±15 %, at least ±2 nF
Password	off / 0999 (off, 0)*
Fault memory alarm messages	on / (off)*

Interface

Interface; protocol	RS-485; BMS, Modbus RTU, isoData
Baud rate	BMS (9.6 kBit/s), Modbus RTU
	(selectable), isoData (115.2 kBit/s)
Cable length (9.6 kBit/s)	≤ 1200 m
Cable: shield connected to PE on one	recommended: CAT6/CAT7 min. AWG23
side	
alternative: twisted pairs, shield	J-Y(St)Y min. 2 × 0.8
connected to PE on one side	
Terminating resistor	120 Ω (0.25 W), internal, can be
	connected
Device address, BMS bus, Modbus RTU	390 (3)*

Switching elements

Switching elements	2×1 n/o contacts, common terminal 11
Operating principle	n/c, n/o (n/o)*
Electrical endurance	10,000 cycles

Contact data acc. to IEC 60947-5-1

Utilisation category	AC-12 / AC-14 / DC-12 / DC-12 / DC-12
Rated operational voltage	230 V / 230 V / 24 V / 110 V / 220 V
Rated operational current	5 A / 2 A / 1 A / 0.2 A / 0.1 A
Necessary minimum contact load (relay	10 mA / DC 5 V
manufacturer's reference)	

Environment/EMC

EMC

IEC 61326-2-4, I	DIN FN	50121-3-2
		JU121 J Z

Ambient temperatures

Operation	-40…+70 °C
Transport	−50…+85 °C
Storage	-55+80 °C

Climatic class acc. to IEC 60721

Stationary use (IEC 60721-3-3)	3K24
Transport (IEC 60721-3-2)	2K11
Long-time storage (IEC 60721-3-1)	1K23

Classification of mechanical conditions acc. to IEC 60721

Stationary use (IEC 60721-3-3)	3M12
Transport (IEC 60721-3-2)	2M4
Long-time storage (IEC 60721-3-1)	1M12

Other

Operating mode	continuous operation
Mounting	cooling slots must be ventilated
	vertically
Degree of protection, built-in components (DIN EN 60529)	IP30
Degree of protection, terminals (DIN EN 60529)	IP20
Enclosure material	polycarbonate
Flammability class	UL 94V-0
DIN rail mounting acc. to	IEC 60715
Screw mounting	$2 \times M4$ with mounting clip
Weight	≤ 150 g

Connection

Screw-type terminals Nominal current ≤ 10 A 0.5...0.6 Nm (5...7 lb-in) **Tightening torque** Conductor sizes AWG 24...12 Stripping length 8 mm Rigid/flexible 0.2...2.5 mm² Flexible with ferrules with/without plastic sleeve 0.25...2.5 mm² Multi-conductor rigid 0.2...1.5 mm² Multi-conductor flexible 0.2...1.5 mm² Multi-conductor flexible with ferrules without plastic 0.25...1.5 mm² sleeve Multi-conductor flexible with TWIN ferrules with 0.25...1.5 mm² plastic sleeve

Push-wire terminals

Nominal current	≤ 10 A
Conductor sizes	AWG 2414
Stripping length	10 mm
Rigid	0.22.5 mm ²
Flexible without ferrules	0.752.5 mm ²
Flexible with ferrules with/without plastic sleeve	0.252.5 mm ²
Multi-conductor flexible with TWIN ferrules with	0.51.5 mm ²
plastic sleeve	
Opening force	50 N
Test opening	Ø 2.1 mm

Standards and certifications

The ISOMETER[®] was developed in compliance with the following standards:

- DIN EN 61557-8 (VDE 0413-8): 2015-12/Cor1: 2016-12
- DIN EN 50155: 2018-05
- EN 45545-2:2016
- IEC 61557-8: 2014/COR1: 2016

Application in rail vehicles / DIN EN 45545-2:2016

If the distance to neighbouring components that do not comply with the requirement of DIN EN 45545-2 table 2 is <20 mm horizontally or <200 mm vertically, these components shall be considered grouped.

EU Declaration of Conformity

The EU Declaration of Conformity is available at the following Internet address:

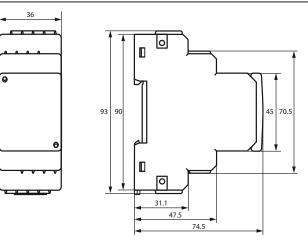
https://www.bender.de/fileadmin/content/Products/CE/ CEKO_isoXX425.pdf

UKCA Declaration of Conformity

Die UKCA-Konformitätserklärung ist unter folgendem Link verfügbar:

https://www.bender.de/fileadmin/content/Products/UKCA/UKCA_isoXX425.pdf

Ordering data


	Supply voltage <i>U</i> _s	Article	number
Туре		Push-wire terminals	Screw-type terminals
isoRW425-D4W-4 ¹⁾	AC 100240 V DC 24240 V	B71037000W	B91037000W

¹⁾ Option W: Increased shock and vibration resistance 3K23; 3M12; -40...+70 °C

Accessories

Description	Article number
Mounting clip for screw mounting	B98060008
XM420 mounting frame	B990994

Dimensions

Dimension diagram (in mm)

Bender GmbH & Co. KG

Londorfer Straße 65 35305 Grünberg Germany

Tel.: +49 6401 807-0 info@bender.de www.bender.de

© Bender GmbH & Co. KG, Germany Subject to change! The specified standards take into account the edition valid until 08.2024 unless otherwise indicated.