ISOMETER® isoES425

Insulation monitoring device for unearthed AC-, AC/DC and DC systems for energy storage devices up to AC/DC 400 V

ISOMETER® isoES425

Insulation monitoring device for unearthed AC-, AC/DC and DC systems for energy storage devices up to AC/DC 400 V

Device features

- Monitoring of the insulation resistance *R*_F for unearthed AC/DC systems
- Measuring the system voltage U_n (True-RMS) with undervoltage/ overvoltage detection
- Measuring the DC residual voltages U_{L1e} (L1/+ to PE) and U_{12e} (L2/- to PE)
- Selectable start-up delay, response delay and delay on release
- Alarm output via LEDs ("AL1", "AL2"), display, and alarm relays ("K1", "K2")
- Automatic device self test with connection monitoring
- Selectable n/c or n/o relay operation
- Measured value indication via multifunctional LC display
- Activatable fault memory
- Automatic adjustment to the system leakage capacitance C_e up to 100 μF
- Two separately adjustable response value ranges 1...990 kΩ (prewarning, alarm)
- Password protection against
 unauthorised changing of parameters
- RS-485 (galvanically isolated) including the following protocols:
 - BMS (Bender measuring device interface) for the data exchange with other Bender devices
 - IsoData (for continuous data output)

Intended use

The ISOMETER[®] isoES425 monitors the insulation resistance $R_{\rm F}$ of unearthed AC, AC/DC and DC systems (IT systems) for energy storage devices up to AC/DC 400 V.

DC components existing in AC systems do not influence the operating characteristics when a minimum load current of DC 10 mA flows. A separate supply voltage U_s allows de-energised systems to be monitored as well.

By using the isoES425 in network operation, the connection to earth is monitored for interruptions, which are displayed as faults. When operated as an island network, the isoES425 takes over the monitoring of the island network (IT system).

In order to meet the requirements of the applicable standards, customised parameter settings must be made on the equipment in order to adapt it to local equipment and operating conditions. Please heed the limits of the range of application indicated in the technical data.

Any other use or a use that goes beyond this constitutes improper use.

- To ensure that the ISOMETER[®] functions correctly, an internal resistance of $\leq 1 \text{ k}\Omega$ must exist between L1/+ and L2/– via the source (e.g. PSU) or the load.
- **1** If the ISOMETER[®] is installed inside a control cabinet, the insulation fault message must be audible and/or visible to attract attention.

Functional description

The ISOMETER[®] measures the insulation resistance $R_{\rm F}$ and the system leakage capacitance $C_{\rm e}$ between the system to be monitored (L1/+, L2/–) and earth (PE). The RMS value of the system voltage $U_{\rm n}$ between L1/+ and L2/– as well as the residual voltages $U_{\rm L1e}$ (between L1/+ and earth) and $U_{\rm L2e}$ (between L2/– and earth) are also measured.

In the AC system, the location of the fault in the DC link is indicated by a positive or negative sign preceding the insulation resistance measured value in the AC system from a minimum nominal system voltage between the AC system and earth, caused by a fault in a connected DC circuit. A percentage distribution to the location of the fault is not possible. The faulty conductor "R %" is only represented as a one-sided fault on L1/+ (+100 %) or L2/- (-100 %).

Also from a minimum voltage, the ISOMETER[®] determines the insulation resistance R_{UGe} from the residual voltages U_{L1e} and U_{L2e} . It is an approximate value for one-sided insulation faults and can be used as a trend indicator in cases where the ISOMETER[®] has to adapt to an $R_{\rm F}$ and $C_{\rm e}$ relation that varies considerably.

The detected fault is assignable to an alarm relay via the menu. If the values $R_{\rm F}$ or $U_{\rm n}$ violate the response values activated in the "AL" menu, this will be indicated by the LEDs and relays "K1" and "K2" according to the signalling assignment set in the "out" menu. In addition, the menu offers the setting of the relay operation and the activation of the fault memory "M".

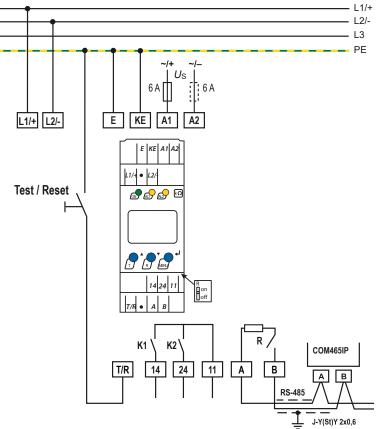
If the values $R_{\rm F}$ or $U_{\rm n}$ do not violate their release value (response value plus hysteresis) for the period $t_{\rm off}$ without interruption, the alarm relays will switch back to their initial position and the alarm LEDs stop lighting. If the fault memory is activated, the alarm relays remain in alarm position and the LEDs are lit until the reset key "R" is pressed or the supply voltage $U_{\rm s}$ is interrupted.

The device function can be checked with the test button "T".

Parameters are assigned to the device via the LCD and the control buttons on the front panel; this function can be password-protected. Parameterisation is also possible via the BMS bus, e.g. using a BMS Ethernet gateway (COM465IP).

Connection

i


For UL applications:

Only use 60/75 °C copper lines.

For UL and CSA applications: Connect the supply voltage via 5 A fuses.

For details about the conductor cross sections required for wiring, refer to chapter Technical data.

Wiring diagram

Terminal	Connections
A1, A2	Connection to the supply volt-
	age $U_{\rm s}$ via fuse (line protection):
	If supplied from an IT system,
	protect both lines by a fuse.
E, KE Connect each terminal separately to P	
	Use same wire cross section as for "A1", "A2".
L1/+, L2/-	Connection to the system to be monitored
T/R	Connection for the external com-
	bined test and reset button
11, 14	Connection to alarm relay "K1"
11, 24	Connection to alarm relay "K2"
A, B	RS-485 communication interface with
	connectable terminating resistor
	Example: Connection of a BMS
	Ethernet gateway COM465IP

Technical data isoES425

()* = factory setting

Insulation coordination acc. to IEC 60664-1/-3

Definitions

Measuring circuit (IC1)	L1/+, L2/-
Supply circuit (IC2)	A1, A2
Output circuit (IC3)	11, 14, 24
Control circuit (IC4)	E, KE, T/R, A, B
Rated voltage	400 V
Overvoltage category	III

Rated impulse voltage

IC1/(IC2-4)	6 kV
IC2/(IC3-4)	4 kV
IC3/(IC4)	4 kV

Rated insulation voltage

IC1/(IC2-4)	400 V
IC2/(IC3-4)	250 V
IC3/(IC4)	250 V
Pollution degree	3

Protective separation (reinforced insulation) between

IC1/(IC2-4)	Overvoltage category III, 600 V
IC2/(IC3-4)	Overvoltage category III, 300 V
IC3/(IC4)	Overvoltage category III, 300 V

Voltage test (routine test) according to IEC 61010-1

IC2/(IC3-4)	AC 2.2 kV
IC3/(IC4)	AC 2.2 kV

Supply voltage

Supply voltage U _s	AC 100240 V
	DC 24240 V
Tolerance of U _s	-30+15 %
Frequency range of U _s	4763 Hz
Power consumption	\leq 3 W, \leq 9 VA

Monitored IT system

Nominal system voltage U _n	3(N)AC, AC/DC 0400 V
Tolerance of U _n	+25 %
Frequency range of U _n	DC, 15460 Hz

Measuring circuit

Measuring voltage $U_{\rm m}$	±12 V
Measuring current $I_{\rm m}$ at $R_{\rm F} = 0 \Omega$	≤ 110 μA
Internal resistance R _i	≥ 115 kΩ
Permissible system leakage capacitance C _e	≤ 100 μF
Permissible extraneous DC voltage $U_{\rm fg}$	\leq 700 V

Response values

Response value R _{an1}	2…990 kΩ (69 kΩ)*
Response value R _{an2}	1…980 kΩ (23 kΩ)*
Relative uncertainty R _{an}	± 15 %, at least $\pm 1~\text{k}\Omega$
Hysteresis R _{an}	25 %, at least 1 kΩ
Undervoltage detection	10…499 V (off)*
Overvoltage detection	11500 V (off)*
Relative uncertainty U	±5 %, at least ±5 V
Relative uncertainty depending on the	-0,015 %/Hz
frequency ≥ 400 Hz	
Hysteresis U	5 %, at least 5 V

Time response

Response time $t_{\rm an}$ of $R_{\rm F} = 0.5 \times R_{\rm an}$ and $C_{\rm e} = 1 \mu\text{F}$ acc. to	≤ 10 s
IEC 61557-8	
Start-up delay t	010 s (0 s)*
Response delay t _{on}	099 s (0 s)*
Delay on release t _{off}	099 s (0 s)*

Displays, memory

Display	LC display, multi-functional, not illuminated
Display range measured value insulation resistance $(R_{\rm F})$	1 kΩ 4 MΩ
Operating uncertainty R _F	± 15 %, at least ± 1 k Ω
Display range measured value system voltage (U_n)	0500 V _{RMS}
Operating uncertainty	±5 %, at least ±5 V
Display range measured value system leakage capacitance of $R_{\rm F} > 10 \text{ k}\Omega$	0105 μF
Operating uncertainty	± 15 %, at least $\pm 2\mu F$
Password	off / 0999 (off, 0)*
Fault memory alarm messages	on / (off)*

Interface

Interface; protocol	RS-485; BMS, isoData
Baud rate	BMS (9.6 kBit/s), isoData (115.2 kBit/s)
Cable length (9.6 kBit/s)	≤ 1200 m
Cable: twisted pairs, shield connected to	min. J-Y(St)Y 2 × 0.6
PE on one side	
Terminating resistor	120 Ω (0.25 W), internal, can be
	connected
Device address, BMS bus	390 (3)*

Switching elements

Switching elements	2×1 n/o contacts, common terminal 11
Operating principle	n/c, n/o (n/o)*
Electrical endurance	10,000 cycles

Contact data acc. to IEC 60947-5-1

Utilisation category	AC-12 / AC-14 / DC-12 / DC-12 / DC-12
Rated operational voltage	230 V / 230 V / 24 V / 110 V / 220 V
Rated operational current	5 A / 2 A / 1 A / 0.2 A / 0.1 A
Necessary minimum contact load (relay	10 mA / DC 5 V
manufacturer's reference)	

Environment/EMC

EMC	IEC 61326-2-4

Ambient temperatures

Operation	−25…+70 °C
Transport	-40…+85 ℃
Storage	−25…+70 °C

Climatic class acc. to IEC 60721

Stationary use (IEC 60721-3-3)	3K24
Transport (IEC 60721-3-2)	2K11
Long-time storage (IEC 60721-3-1)	1K23

Classification of mechanical conditions acc. to IEC 60721

Stationary use (IEC 60721-3-3)	3M12
Transport (IEC 60721-3-2)	2M4
Long-time storage (IEC 60721-3-1)	1M12

Other

Operating mode	continuous operation
Mounting	cooling slots must be ventilated
	vertically
Degree of protection, built-in components	IP30
(DIN EN 60529)	
Degree of protection, terminals (DIN EN 60529)	IP20
Enclosure material	polycarbonate
DIN rail mounting acc. to	IEC 60715
Screw mounting	$2 \times M4$ with mounting clip
Weight	≤ 150 g

Connection

Push-wire terminals	
Nominal current	≤ 10 A
Conductor sizes	AWG 2414
Stripping length	10 mm
Rigid	0.22.5 mm ²
Flexible without ferrules	0.752.5 mm ²
Flexible with ferrules with/without plastic sleeve	0.252.5 mm ²
Multi-conductor flexible with TWIN ferrules with plastic sleeve	0.51.5 mm ²
Opening force	50 N
Test opening	Ø 2.1 mm

Standards and certifications

The ISOMETER[®] was developed in compliance with the following standards:

- DIN EN 61557-8 (VDE 0413-8): 2015-12/Cor1: 2016-12
- IEC 61557-8: 2014/COR1: 2016

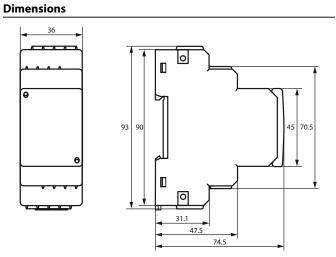
EU Declaration of Conformity

The EU Declaration of Conformity is available at the following Internet address:

https://www.bender.de/fileadmin/content/Products/CE/ CEKO_isoXX425.pdf

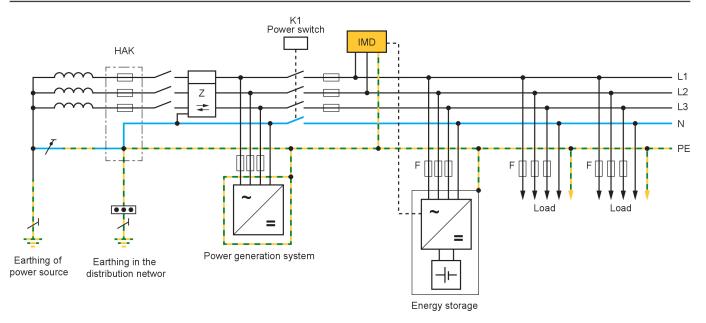
UKCA Declaration of Conformity

Die UKCA-Konformitätserklärung ist unter folgendem Link verfügbar:

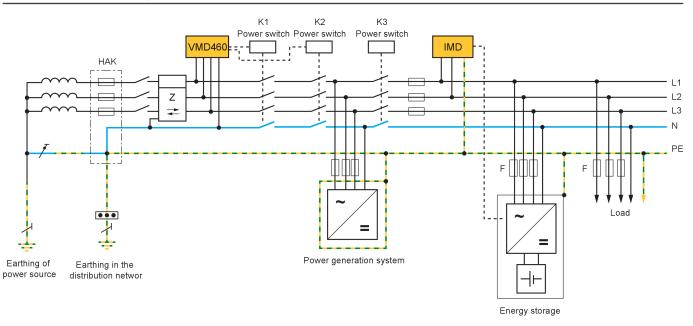

https://www.bender.de/fileadmin/content/Products/UKCA/UKCA_isoXX425.pdf

Ordering data

		Article	Article number	
Туре	Nominal system voltage U _n	Push-wire terminals	Screw-type terminals	
isoES425-D4-4	3(N)AC, AC/DC 0400 V	B71037020	-	


Accessories

Description	Article number
Mounting clip for screw mounting	B98060008
XM420 mounting frame	B990994



Dimension diagram (in mm)

Application example energy storage < 30 KW

Application principle acc. to VDE application guide VDE-AR-E 2510-2

Application example energy storage > 30 KW

Application principle acc. to VDE application guide VDE-AR-E 2510-2

Bender GmbH & Co. KG

Londorfer Straße 65 35305 Grünberg Germany

Tel.: +49 6401 807-0 info@bender.de www.bender.de

© Bender GmbH & Co. KG, Germany Subject to change! The specified standards take into account the edition valid until 08.2024 unless otherwise indicated.